Call for Papers  

Article Details


Review Article

White Matter Damage in Alzheimer’s Disease: Contribution of Oligodendrocytes

[ Vol. 19 , Issue. 9 ]

Author(s):

Jinyu Zhou, Peng Zhang, Bo Zhang and Yuhan Kong*   Pages 629 - 640 ( 12 )

Abstract:


Alzheimer’s disease (AD) is an age-related neurodegenerative disease seriously influencing the quality of life and is a global health problem. Many factors affect the onset and development of AD, but specific mechanisms underlying the disease are unclear. Most studies investigating AD have focused on neurons and the gray matter in the central nervous system (CNS) but have not led to effective treatments. Recently, an increasing number of studies have focused on white matter (WM). Magnetic resonance imaging and pathology studies have shown different degrees of WM abnormality during the progression of AD. Myelin sheaths, the main component of WM in the CNS, wrap and insulate axons to ensure conduction of the rapid action potential and axonal integrity. WM damage is characterized by progressive degeneration of axons, oligodendrocytes (OLs), and myelin in one or more areas of the CNS. The contributions of OLs to AD progression have, until recently, been largely overlooked. OLs are integral to myelin production, and the proliferation and differentiation of OLs, an early characteristic of AD, provide a promising target for preclinical diagnosis and treatment. However, despite some progress, the key mechanisms underlying the contributions of OLs to AD remain unclear. Given the heavy burden of medical treatment, a better understanding of the pathophysiological mechanisms underlying AD is vital. This review comprehensively summarizes the results on WM abnormalities in AD and explores the relationship between OL progenitor cells and the pathogenesis of AD. Finally, the underlying molecular mechanisms and potential future research directions are discussed.

Keywords:

Alzheimer’s disease, signaling pathways, oligodendrocytes, myelin sheath, central nervous system, white matter.

Affiliation:



Read Full-Text article