Submit Manuscript  

Article Details


Combination of Memantine and 6-Chlorotacrine as Novel Multi-Target Compound against Alzheimer’s Disease

[ Vol. 16 , Issue. 9 ]

Author(s):

Martina Kaniakova, Eugenie Nepovimova, Lenka Kleteckova, Kristyna Skrenkova, Kristina Holubova, Zofia Chrienova, Vendula Hepnarova, Tomas Kucera, Tereza Kobrlova, Karel Vales, Jan Korabecny, Ondrej Soukup* and Martin Horak*   Pages 821 - 833 ( 13 )

Abstract:


Background: Alzheimer’s disease (AD) is the most common form of dementia in the elderly. It is characterized as a multi-factorial disorder with a prevalent genetic component. Due to the unknown etiology, current treatment based on acetylcholinesterase (AChE) inhibitors and N–methyl-D-aspartate receptors (NMDAR) antagonist is effective only temporary. It seems that curative treatment will necessarily be complex due to the multifactorial nature of the disease. In this context, the so-called “multi-targeting" approach has been established.

Objectives: The aim of this study was to develop a multi-target-directed ligand (MTDL) combining the support for the cholinergic system by inhibition of AChE and at the same time ameliorating the burden caused by glutamate excitotoxicity mediated by the NMDAR receptors.

Methods: We have applied common approaches of organic chemistry to prepare a hybrid of 6-chlorotacrine and memantine. Then, we investigated its blocking ability towards AChE and NMDRS in vitro, as well as its neuroprotective efficacy in vivo in the model of NMDA-induced lessions. We also studied cytotoxic potential of the compound and predicted the ability to cross the blood-brain barrier.

Results: A novel molecule formed by combination of 6-chlorotacrine and memantine proved to be a promising multipotent hybrid capable of blocking the action of AChE as well as NMDARs. The presented hybrid surpassed the AChE inhibitory activity of the parent compound 6-Cl-THA twofold. According to results it has been revealed that our novel hybrid blocks NMDARs in the same manner as memantine, potently inhibits AChE and is predicted to cross the blood-brain barrier via passive diffusion. Finally, the MTDL design strategy was indicated by in vivo results which showed that the novel 6-Cl-THA-memantine hybrid displayed a quantitatively better neuroprotective effect than the parent compound memantine.

Conclusion: We conclude that the combination of two pharmacophores with a synergistic mechanism of action into a single molecule offers great potential for the treatment of CNS disorders associated with cognitive decline and/or excitotoxicity mediated by NMDARs.

Keywords:

6-Chlorotacrine, memantine, acetylcholinesterase, NMDA receptor, Alzheimer´s disease, ion channel, patch-clamp technique.

Affiliation:

Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, National Institute of Mental Health, Topolova 748, 250 67 Klecany, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, National Institute of Mental Health, Topolova 748, 250 67 Klecany, Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, Hradec Kralove 500 05, Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, Hradec Kralove 500 05, Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, National Institute of Mental Health, Topolova 748, 250 67 Klecany, Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4



Read Full-Text article